Специалисты изучили новые аспекты свойств топологических изоляторов

Международная группа ученых, куда вошли специалисты из сибирских институтов, исследовала взаимодействие топологических изоляторов с лазерным излучением. Результаты работы открывают новые возможности управления током с помощью световой волны, что в перспективе позволит создать быстродействующие электронные устройства и средства связи. Также новые данные важны для понимания релятивистских эффектов, возникающих, когда скорости движения частиц близки к скорости света. Статья об этом опубликована  в журнале Nature.

Исследование свойств топологических изоляторов на примере поверхности кристалла теллурида висмута проводила группа специалистов Регенсбургского университета, университета Марбурга, Института физики полупроводников им. А. В. Ржанова СО РАН, Института геологии и минералогии им. В. С. Соболева СО РАН, Новосибирского государственного университета.

На поверхности топологического изолятора электроны ведут себя как безмассовые частицы, и при освещении лазером удается разогнать их до весьма больших скоростей. В ходе нового исследования обнаружилось, что ускоренные электроны способны двигаться по поверхности топологического изолятора практически без рассеяния ― в отличие от движения в обычном кристалле ― а значит, проводить ток гораздо быстрее, без потерь на нагрев. Более того, электроны переизлучают свет лазера иначе, чем в нетопологических материалах ― генерируя световые волны промежуточной частоты (а не кратно частоте исходного излучения).

Кристалл теллурида висмута

Кристалл теллурида висмута

«На поверхность топологического изолятора (кристалла теллурида висмута) падает свет лазера определенной длины волны, а переизлучается ― широким спектром. Управляя характеристиками исходной волны, можно двигать, варьировать, получать любые длины переизлученных волн. Без специфических свойств топологического изолятора это было бы недостижимо. Также можно почти мгновенно изменить состояние электронов с помощью лазера ― это перспективно для создания сверхбыстрых электронных устройств», ― объясняет соавтор исследования, заведующий лабораторией физики и технологии гетероструктур ИФП СО РАН, профессор НГУ, профессор РАН доктор физико-математических наук Олег Евгеньевич Терещенко.

Вырастить кристалл топологического изолятора ― сложная задача, но благодаря многолетнему опыту специалисты ИГМ СО РАН и ИФП СО РАН успешно с ней справляются. После того, как кристалл готов, его нужно охарактеризовать ― определить качество, тип проводимости, убедиться, что электроны на поверхности ведут себя, как и должны в топологическом изоляторе ― то есть, их энергия линейно зависит от импульса, а не квадратично, как свойственно свободным электронам и электронам в обычных (тривиальных) кристаллах. Чтобы посмотреть электронную структуру кристаллического материала, используется интенсивное излучение и специальное оборудование: просвечивая материал и регистрируя изменения, происходящие с электронами, можно получить подробную информацию об энергии частиц, их магнитных моментах и прочих характеристиках, от которых напрямую зависят свойства вещества. 

«Объекты исследования ― высококачественные кристаллы теллурида висмута с встроенным p-n переходом — выращивались в ИГМ СО РАН старшим научным сотрудником кандидатом геолого-минералогических наук Константином Александровичем Кохом по методике, которую мы разработали совместно. Затем проводилась характеризация кристаллов ― в ИФП СО РАН, и на источнике синхротронного излучения (HiSOR) в Японии, с применением фотоэлектронного спектрометра для исследования электронной структуры кристаллов методом фотоэмиссии с угловым и спиновым разрешением (ARPES). Сейчас подобная установка есть и в нашем Институте, но на момент проведения работы приходилось пользоваться зарубежной. Дальнейшее воздействие на кристалл лазерными импульсами, описание процессов, происходящих при этом в материале, проводили немецкие коллеги», ― говорит Олег Терещенко.

Любопытно, что новое открытие в физике твердого тела перекликается с актуальными проблемами физики высоких энергий — обнаружением частиц, чье существование пока не подтверждено экспериментально. Уже упоминавшиеся «безмассовые» электроны на поверхности топологических изоляторов могут двигаться со скоростями достаточными, чтобы проявились релятивистские эффекты ― характерные для околосветовых скоростей.

««Частицы, предсказанные раньше теоретически, для разделов физики высоких энергий, сейчас ищут внутри твердого тела. Это, например, фермионы Майорана, являющиеся кандидатами, в том числе, для частиц холодной тёмной материи. Считается, что экспериментальное обнаружение майорановских частиц как в физике высоких энергий, так и в области физики твёрдого тела приведёт к важным последствиям для науки. Таким образом, у исследователей появляется шанс обнаружить новые частицы с помощью небольших приборов (если сравнивать с коллайдерами) и при малых энергетических затратах», ― резюмирует Олег Терещенко. 

Исследование выполнялось при поддержке Российского научного фонда (проект №17-12-01047), Российского фонда фундаментальных исследований (проект № 21-52-12024).

Пресс-служба ИФП СО РАН